El canal de fuga de sodio NALCN es un jugador crucial altamente conservado de la excitabilidad celular

La actividad eléctrica de las células excitables, como las neuronas y las células endocrinas, implica una acción coordinada y estrictamente regulada de un panel de proteínas especializadas que incluyen canales iónicos, transportadores, intercambiadores y receptores de hormonas y neurotransmisores (Kandel, 2013; Hille, 2001). Cualquier alteración en la función de un componente de este «Excitosoma» induce un estado patológico que puede ser no solo grave sino también letal en humanos. El sodio (Na +) - canal de fuga NALCN se aisló en 1999 (Lee et al, 1999) y estudios posteriores revelaron que conduce un influjo de sodio de fondo y regula críticamente la actividad eléctrica de las neuronas (revisado en Cochet-Bissuel et al, 2014). De hecho, la interrupción de la expresión de NALCN en diferentes tipos de neuronas de varias especies condujo a una hiperpolarización de 15mV del potencial de membrana en reposo y una disminución de su tasa de disparo (Lu et al, 2007, Lu et al, 2011; Xie et al, 2013 ; Gao et al, 2015; Flourakis et al, 2015; Lutas et al, 2016; Shi et al, 2016; Yeh et al, 2017; Ford et al, 2018). NALCN se expresa principalmente en el cerebro, la médula espinal, el corazón y las glándulas endocrinas, pero también en el útero y el intestino. En general, los estudios funcionales revelaron que NALCN es un jugador crucial de la excitabilidad celular y está involucrado en varios procesos fisiológicos fundamentales como el ritmo respiratorio, el ritmo circadiano, el comportamiento locomotor, la sensibilidad al dolor, el sueño, la motilidad gastrointestinal, la osmoregulación sistémica y el parto (revisado en Cochet-Bissuel et al, 2014).

NALCN está involucrado en enfermedades genéticas raras y graves

Las variantes patogénicas recesivas y dominantes de NALCN en humanos y su subunidad auxiliar Unc80 (por ejemplo, un socio importante para la función NALCN), se describieron recientemente en varios estudios clínicos y genéticos (Al-Sayed et al, 2013; Koroglu et al, 2013; Gal et al. , 2016; Takenouchi et al, 2017; Chong et al, 2015; Aoyagi et al, 2015; Wang et al, 2016; Fukai et al, 2016; Karakaya et al, 2016; Sivaraman et al, 2016; Bend et al, 2016 ; Lozic et al, 2016; Vivero et al, 2017; Perez et al, 2016; Shamseldin et al, 2016; Stray-Pedersen et al, 2016; Valkanas et al, 2016; Cherot et al, 2018; Angius et al, 2018 ; Obeid et al, 2018; Campbell et al, 2018; He et al, 2018; Bourque et al, 2018; Hong et al, 2018; Bramswig et al, 2018; Carneiro et al, 2018; Angius et al, 2019; Kuptanon et al, 2019). Las variantes patogénicas recesivas de NALCN y Unc80 están relacionadas con un síndrome denominado hipotonía infantil con retraso psicomotor y facies características (IHPRF) tipo 1 (OMIM # 615419; 39 pacientes de 24 familias) y tipo 2 (OMIM # 616801; 32 pacientes de 21 familias), respectivamente. Las variantes patogénicas dominantes de NALCN son responsables de un síndrome denominado contracturas congénitas de extremidades y cara, hipotonía y retraso del desarrollo (CLIFAHDD; OMIM # 616266, 38 pacientes con mutaciones de Novo). Recientemente se demostró los efectos de ganancia y pérdida de función de las mutaciones que causan los síndromes CLIFAHDD e IHPRF1 respectivamente (Bouasse et al, 2019). Tanto los pacientes con IHPRF como con CLIFAHDD exhiben rasgos clínicos complejos de gravedad variable que pueden causar la muerte prematura en algunos casos. Curiosamente, los pacientes con IHPRF y CLIFAHDD presentan síntomas comunes como hipotonía, dismorfismos faciales, retraso global del desarrollo, estreñimiento y defectos respiratorios. Además, los pacientes con el síndrome CLIFAHDD exhiben artrogriposis distal. Desafortunadamente, no hay un tratamiento disponible para los pacientes hasta la fecha y es necesario desarrollar nuevas terapias.

ENLACES DE INTERÉS

REFERENCIAS

Al-Sayed MD, Al-Zaidan H, Albakheet A, Hakami H, Kenana R, Al-Yafee Y, Al-Dosary M, Qari A, Al-Sheddi T, Al-Muheiza M, Al-Qubbaj W, Lakmache Y, Al-Hindi H, Ghaziuddin M, Colak D, Kaya N (2013) Mutations in NALCN cause an autosomal-recessive syndrome with severe hypotonia, speech impairment, and cognitive delay. Am J Hum Genet 93: 721-6
Angius A, Cossu S, Uva P, Oppo M, Onano S, Persico I, Fotia G, Atzeni R, Cuccuru G, Asunis M, Cucca F, Pruna D, Crisponi L (2018) Novel NALCN biallelic truncating mutations in siblings with IHPRF1 syndrome. Clin Genet
Angius A, Uva P, Oppo M, Buers I, Persico I, Onano S, Cuccuru G, Van Allen MI, Hulait G, Aubertin G, Muntoni F, Fry AE, Anneren G, Stattin EL, Palomares-Bralo M, Santos-Simarro F, Cucca F, Crisponi G, Rutsch F, Crisponi L (2019) Exome sequencing in Crisponi/cold-induced sweating syndrome-like individuals reveals unpredicted alternative diagnoses. Clin Genet 95: 607-614
Aoyagi K, Rossignol E, Hamdan FF, Mulcahy B, Xie L, Nagamatsu S, Rouleau GA, Zhen M, Michaud JL (2015) A Gain-of-Function Mutation in NALCN in a Child with Intellectual Disability, Ataxia, and Arthrogryposis. Hum Mutat 36: 753-7
Bend EG, Si Y, Stevenson DA, Bayrak-Toydemir P, Newcomb TM, Jorgensen EM, Swoboda KJ (2016) NALCN channelopathies: Distinguishing gain-of-function and loss-of-function mutations. Neurology 87: 1131-9
Bouasse M, Impheng H, Servant Z, Lory P, Monteil A (2019) Functional expression of CLIFAHDD and IHPRF pathogenic variants of the NALCN channel in neuronal cells reveals both gain- and loss-of-function properties. Sci Rep 9: 11791
Bourque DK, Dyment DA, MacLusky I, Kernohan KD, Care4Rare Canada C, McMillan HJ (2018) Periodic breathing in patients with NALCN mutations. J Hum Genet
Bramswig NC, Bertoli-Avella AM, Albrecht B, Al Aqeel AI, Alhashem A, Al-Sannaa N, Bah M, Brohl K, Depienne C, Dorison N, Doummar D, Ehmke N, Elbendary HM, Gorokhova S, Heron D, Horn D, James K, Keren B, Kuechler A, Ismail S et al. (2018) Genetic variants in components of the NALCN-UNC80-UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies). Hum Genet
Campbell J, FitzPatrick DR, Azam T, Gibson NA, Somerville L, Joss SK, Deciphering Developmental Disorders S, Urquhart DS (2018) NALCN Dysfunction as a Cause of Disordered Respiratory Rhythm With Central Apnea. Pediatrics 141: S485-S490
Carneiro TN, Krepischi AC, Costa SS, Tojal da Silva I, Vianna-Morgante AM, Valieris R, Ezquina SA, Bertola DR, Otto PA, Rosenberg C (2018) Utility of trio-based exome sequencing in the elucidation of the genetic basis of isolated syndromic intellectual disability: illustrative cases. Appl Clin Genet 11: 93-98
Cherot E, Keren B, Dubourg C, Carre W, Fradin M, Lavillaureix A, Afenjar A, Burglen L, Whalen S, Charles P, Marey I, Heide S, Jacquette A, Heron D, Doummar D, Rodriguez D, Billette de Villemeur T, Moutard ML, Guet A, Xavier J et al. (2017) Using medical exome sequencing to identify the causes of neurodevelopmental disorders: Experience of 2 clinical units and 216 patients. Clin Genet
Chong JX, McMillin MJ, Shively KM, Beck AE, Marvin CT, Armenteros JR, Buckingham KJ, Nkinsi NT, Boyle EA, Berry MN, Bocian M, Foulds N, Uzielli ML, Haldeman-Englert C, Hennekam RC, Kaplan P, Kline AD, Mercer CL, Nowaczyk MJ, Klein Wassink-Ruiter JS et al. (2015) De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay. Am J Hum Genet 96: 462-73
Cochet-Bissuel M, Lory P, Monteil A (2014) The sodium leak channel, NALCN, in health and disease. Front Cell Neurosci 8: 132
Kandel ER (2013) Principles of Neural Science. 4th ed. . New York, NY: McGraw Hill
Flourakis M, Kula-Eversole E, Hutchison AL, Han TH, Aranda K, Moose DL, White KP, Dinner AR, Lear BC, Ren D, Diekman CO, Raman IM, Allada R (2015) A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability. Cell 162: 836-48
Ford NC, Ren D, Baccei ML (2018) NALCN channels enhance the intrinsic excitability of spinal projection neurons. Pain 159: 1719-1730
Fukai R, Saitsu H, Okamoto N, Sakai Y, Fattal-Valevski A, Masaaki S, Kitai Y, Torio M, Kojima-Ishii K, Ihara K, Chernuha V, Nakashima M, Miyatake S, Tanaka F, Miyake N, Matsumoto N (2016) De novo missense mutations in NALCN cause developmental and intellectual impairment with hypotonia. J Hum Genet 61: 451-5
Gal M, Magen D, Zahran Y, Ravid S, Eran A, Khayat M, Gafni C, Levanon EY, Mandel H (2016) A novel homozygous splice site mutation in NALCN identified in siblings with cachexia, strabismus, severe intellectual disability, epilepsy and abnormal respiratory rhythm. Eur J Med Genet 59: 204-9
Gao S, Xie L, Kawano T, Po MD, Guan S, Zhen M, Pirri JK, Alkema MJ (2015) The NCA sodium leak channel is required for persistent motor circuit activity that sustains locomotion. Nat Commun 6: 6323
Hille B (2001) Ion channels of excitable membranes, 3rd ed. Sinauer Associates, Sunderland, MA.
Hong H, Kamerman-Kretzmer R, Kato R, Rosser T, VanHirtum-Das M, Davidson Ward SL (2018) Case Report of Pediatric Channelopathies With UNC80 and KCNJ11 Mutations Having Abnormal Respiratory Control Treated With Positive Airway Pressure Therapy. J Clin Sleep Med 14: 1419-1425
Karakaya M, Heller R, Kunde V, Zimmer KP, Chao CM, Nurnberg P, Cirak S (2016) Novel Mutations in the Nonselective Sodium Leak Channel (NALCN) Lead to Distal Arthrogryposis with Increased Muscle Tone. Neuropediatrics 47: 273-7
Koroglu C, Seven M, Tolun A (2013) Recessive truncating NALCN mutation in infantile neuroaxonal dystrophy with facial dysmorphism. J Med Genet 50: 515-20
Kuptanon C, Srichomthong C, Ittiwut C, Wechapinan T, Sri-Udomkajorn S, Iamopas O, Phokaew C, Suphapeetiporn K, Shotelersuk V (2019) Whole exome sequencing revealed mutations in FBXL4, UNC80, and ADK in Thai patients with severe intellectual disabilities. Gene 696: 21-27
Lee JH, Cribbs LL, Perez-Reyes E (1999) Cloning of a novel four repeat protein related to voltage-gated sodium and calcium channels. FEBS Lett 445: 231-6
Lozic B, Johansson S, Lovric Kojundzic S, Markic J, Knappskog PM, Hahn AF, Boman H (2016) Novel NALCN variant: altered respiratory and circadian rhythm, anesthetic sensitivity. Ann Clin Transl Neurol 3: 876-883
Lu B, Su Y, Das S, Liu J, Xia J, Ren D (2007) The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129: 371-83
Lu TZ, Feng ZP (2011) A sodium leak current regulates pacemaker activity of adult central pattern generator neurons in Lymnaea stagnalis. PLoS One 6: e18745
Lutas A, Lahmann C, Soumillon M, Yellen G (2016) The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons. Elife 5
Obeid T, Hamzeh AR, Saif F, Nair P, Mohamed M, Al-Ali MT, Bastaki F (2018) Identification of a novel homozygous UNC80 variant in a child with infantile hypotonia with psychomotor retardation and characteristic facies-2 (IHPRF2). Metab Brain Dis
Perez Y, Kadir R, Volodarsky M, Noyman I, Flusser H, Shorer Z, Gradstein L, Birnbaum RY, Birk OS (2016) UNC80 mutation causes a syndrome of hypotonia, severe intellectual disability, dyskinesia and dysmorphism, similar to that caused by mutations in its interacting cation channel NALCN. J Med Genet 53: 397-402
Shamseldin HE, Faqeih E, Alasmari A, Zaki MS, Gleeson JG, Alkuraya FS (2016) Mutations in UNC80, Encoding Part of the UNC79-UNC80-NALCN Channel Complex, Cause Autosomal-Recessive Severe Infantile Encephalopathy. Am J Hum Genet 98: 210-5
Shi Y, Abe C, Holloway BB, Shu S, Kumar NN, Weaver JL, Sen J, Perez-Reyes E, Stornetta RL, Guyenet PG, Bayliss DA (2016) Nalcn Is a "Leak" Sodium Channel That Regulates Excitability of Brainstem Chemosensory Neurons and Breathing. J Neurosci 36: 8174-87
Sivaraman I, Friedman NR, Prayson RA (2016) Muscle biopsy findings in a child with NALCN gene mutation. J Clin Neurosci 34: 222-223
Stray-Pedersen A, Cobben JM, Prescott TE, Lee S, Cang C, Aranda K, Ahmed S, Alders M, Gerstner T, Aslaksen K, Tetreault M, Qin W, Hartley T, Jhangiani SN, Muzny DM, Tarailo-Graovac M, van Karnebeek CD, Care4Rare Canada C, Baylor-Hopkins Center for Mendelian G, Lupski JR et al. (2016) Biallelic Mutations in UNC80 Cause Persistent Hypotonia, Encephalopathy, Growth Retardation, and Severe Intellectual Disability. Am J Hum Genet 98: 202-9
Takenouchi T, Inaba M, Uehara T, Takahashi T, Kosaki K, Mizuno S (2018) Biallelic mutations in NALCN: Expanding the genotypic and phenotypic spectra of IHPRF1. Am J Med Genet A 176: 431-437
Valkanas E, Schaffer K, Dunham C, Maduro V, du Souich C, Rupps R, Adams DR, Baradaran-Heravi A, Flynn E, Malicdan MC, Gahl WA, Toro C, Boerkoel CF (2016) Phenotypic evolution of UNC80 loss of function. Am J Med Genet A 170: 3106-3114
Vivero M, Cho MT, Begtrup A, Wentzensen IM, Walsh L, Payne K, Zarate YA, Bosanko K, Schaefer GB, DeBrosse S, Pollack L, Mason K, Retterer K, DeWard S, Juusola J, Chung WK (2017) Additional de novo missense genetic variants in NALCN associated with CLIFAHDD syndrome. Clin Genet 91: 929-931
Wang Y, Koh K, Ichinose Y, Yasumura M, Ohtsuka T, Takiyama Y (2016) A de novo mutation in the NALCN gene in an adult patient with cerebellar ataxia associated with intellectual disability and arthrogryposis. Clin Genet 90: 556-557
Xie L, Gao S, Alcaire SM, Aoyagi K, Wang Y, Griffin JK, Stagljar I, Nagamatsu S, Zhen M (2013) NLF-1 delivers a sodium leak channel to regulate neuronal excitability and modulate rhythmic locomotion. Neuron 77: 1069-82
Yeh SY, Huang WH, Wang W, Ward CS, Chao ES, Wu Z, Tang B, Tang J, Sun JJ, Esther van der Heijden M, Gray PA, Xue M, Ray RS, Ren D, Zoghbi HY (2017) Respiratory Network Stability and Modulatory Response to Substance P Require Nalcn. Neuron 94: 294-303 e4